The calculation of multi-soliton solutions of the Vakhnenko equation by the inverse scattering method
نویسنده
چکیده
A B€acklund transformation both in bilinear form and in ordinary form for the transformed Vakhnenko equation is derived. An inverse scattering problem is formulated. The inverse scattering method has a third-order eigenvalue problem. A procedure for finding the exact N -soliton solution of the Vakhnenko equation via the inverse scattering method is described. The procedure is illustrated by considering the cases N 1⁄4 1 and N 1⁄4 2. 2002 Elsevier Science Ltd. All rights reserved.
منابع مشابه
A Novel Nonlinear Evolution Equation Integrable by the Inverse Scattering Method
In this report we consider the nonlinear evolution equation (ut +uux)x +u = 0 (Vakhnenko equation – VE) that can be integrated by the inverse scattering transform (IST) method. This equation arose as a result describing the high-frequency perturbations in a relaxing medium. The VE has two families of travelling wave solutions, both of which are stable to long wavelength perturbations. In partic...
متن کاملMulti-soliton of the (2+1)-dimensional Calogero-Bogoyavlenskii-Schiff equation and KdV equation
A direct rational exponential scheme is offered to construct exact multi-soliton solutions of nonlinear partial differential equation. We have considered the Calogero–Bogoyavlenskii–Schiff equation and KdV equation as two concrete examples to show efficiency of the method. As a result, one wave, two wave and three wave soliton solutions are obtained. Corresponding potential energy of the solito...
متن کاملTopological soliton solutions of the some nonlinear partial differential equations
In this paper, we obtained the 1-soliton solutions of the symmetric regularized long wave (SRLW) equation and the (3+1)-dimensional shallow water wave equations. Solitary wave ansatz method is used to carry out the integration of the equations and obtain topological soliton solutions The physical parameters in the soliton solutions are obtained as functions of the dependent coefficients. Note t...
متن کاملnew analytical method based on Riccati equation for finding Soliton solutions of Nonlinear Lakshmanan-Porsezian-Daniel (LPD) equation
In this present study analytical method based on Riccati Equation as for converting the Nonlinear Lakshmanan-Porsezian-Daniel (LPD) equation into the nonlinear ODE and finding soliton solutions of this sustem discused. Obtaining solutions are new and obtained from wave transformation. The obtained results show that the presented method is effective and appropriate for solving nonlinear differen...
متن کاملMulti soliton solutions, bilinear Backlund transformation and Lax pair of nonlinear evolution equation in (2+1)-dimension
As an application of Hirota bilinear method, perturbation expansion truncated at different levels is used to obtain exact soliton solutions to (2+1)-dimensional nonlinear evolution equation in much simpler way in comparison to other existing methods. We have derived bilinear form of nonlinear evolution equation and using this bilinear form, bilinear Backlund transformations and construction of ...
متن کامل